October 09, 2012 Volume 08 Issue 38

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

hyperMILL 2024 CAD/CAM software suite

OPEN MIND Technologies has introduced its latest hyperMILL 2024 CAD/CAM software suite, which includes a range of powerful enhancements to its core toolpath capabilities, as well as new functionality for increased NC programming efficiency in applications ranging from 2.5D machining to 5-axis milling. New and enhanced capabilities include: Optimized Deep Hole Drilling, a new algorithm for 3- and 5-axis Rest Machining, an enhanced path layout for the 3D Plane Machining cycle, better error detection, and much more.
Learn more.


One-part epoxy changes from red to clear under UV

Master Bond UV15RCL is a low-viscosity, cationic-type UV-curing system with a special color-changing feature. The red material changes to clear once exposed to UV light, indicating that there is UV light access across the adhesive material. Although this change in color from red to clear does not indicate a full cure, it does confirm that the UV light has reached the polymer. This epoxy is an excellent electrical insulator. UV15RCL adheres well to metals, glass, ceramics, and many plastics, including acrylics and polycarbonates.
Learn more.


SPIROL Press-N-Lok™ Pin for plastic housings

The Press-N-Lok™ Pin was designed to permanently retain two plastic components to each other. As the pin is inserted, the plastic backfills into the area around the two opposing barbs, resulting in maximum retention. Assembly time is quicker, and it requires lower assembly equipment costs compared to screws and adhesives -- just Press-N-Lok™!
Learn more about the new Press-N-Lok™ Pin.


Why hybrid bearings are becoming the new industry standard

A combination of steel outer and inner rings with ceramic balls or rollers is giving hybrid bearings unique properties, making them suitable for use in a wide range of modern applications. SKF hybrid bearings make use of silicon nitride (twice as hard as bearing steel) rolling elements and are available as ball bearings, cylindrical roller bearings, and in custom designs. From electric erosion prevention to friction reduction and extended maintenance intervals, learn all about next-gen hybrid bearings.
Read the SKF technical article.


3M and Ansys train engineers on simulating adhesives

Ansys and 3M have created an advanced simulation training program enabling engineers to enhance the design and sustainability of their products when using tapes and adhesives as part of the design. Simulation enables engineers to validate engineering decisions when analyzing advanced polymeric materials -- especially when bonding components made of different materials. Understand the behavior of adhesives under real-world conditions for accurate modeling and design.
Read this informative Ansys blog.


New FATH T-slotted rail components in black from AutomationDirect

Automation-Direct has added a wide assortment of black-colored FATH T-slotted hardware components to match their SureFrame black anodized T-slotted rails, including: cube connectors (2D and 3D) and angle connectors, joining plates of many types, brackets, and pivot joints. Also included are foot consoles, linear bearings in silver and black, cam lever brakes, and L-handle brakes. FATH T-slotted hardware components are easy to install, allow for numerous T-slotted structure configurations, and have a 1-year warranty against defects.
Learn more.


Weird stuff: Moon dust simulant for 3D printing

Crafted from a lunar regolith simulant, Basalt Moon Dust Filamet™ (not a typo) available from The Virtual Foundry closely mirrors the makeup of lunar regolith found in mare regions of the Moon. It enables users with standard fused filament fabrication (FFF) 3D printers to print with unparalleled realism. Try out your ideas before you go for that big space contract, or help your kid get an A on that special science project.
Learn more.


Break the mold with custom injection molding by Rogan

With 90 years of industry experience, Rogan Corporation possesses the expertise to deliver custom injection molding solutions that set businesses apart. As a low-cost, high-volume solution, injection molding is the most widely used plastics manufacturing process. Rogan processes include single-shot, two-shot, overmolding, and assembly. Elevate your parts with secondary operations: drilling and tapping, hot stamping, special finishes, punch press, gluing, painting, and more.
Learn more.


World's first current-carrying fastening technology

PEM® eConnect™ current-carrying pins from Penn-Engineering provide superior electrical connections in applications that demand high performance from internal components, such as automotive electronics. This first-to-market tech provides repeatable, consistent electrical joints and superior installation unmatched by traditional fastening methods. Features include quick and secure automated installation, no hot spots or poor conductivity, and captivation options that include self-clinching and broaching styles.
Learn more about eConnect pins.


New interactive digital catalog from EXAIR

EXAIR's latest catalog offers readers an incredible source of innovative solutions for common industrial problems like conveying, cooling, cleaning, blowoff, drying, coating, and static buildup. This fully digital and interactive version of Catalog 35 is designed for easy browsing and added accessibility. Customers can view, download, print, and save either the full catalog or specific pages and sections. EXAIR products are designed to conserve compressed air and increase personnel safety in the process. Loaded with useful information.
Check out EXAIR's online catalog.


5 cost-saving design tips for CNC machining

Make sure your parts meet expectations the first time around. Xometry's director of application engineering, Greg Paulsen, presents five expert tips for cutting costs when designing custom CNC machined parts. This video covers corners and radii, designing for deep pockets, thread depths, thin walls, and more. Always excellent info from Paulsen at Xometry.
View the video.


What can you secure with a retaining ring? 20 examples

From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.


Load fasteners with integrated RFID

A crane, rope, or chain may be required when something needs lifting -- plus anchoring points on the load. JW Winco offers a wide range of solutions to fasten the load securely, including: lifting eye bolts and rings (with or without rotation), eye rings with ball bearings, threaded lifting pins, shackles, lifting points for welding, and more. Some, such as the GN 581 Safety Swivel Lifting Eye Bolts, even have integrated RFID tags to clearly identify specific lifting points during wear and safety inspections and manage them digitally and without system interruption.
Learn more.


Couplings solve misalignments more precisely with targeted center designs

ALS Couplings from Miki Pulley feature a simplistic, three-piece construction and are available in three different types for more precisely handling parallel, angular, or axial misalignment applications. The key feature of this coupling design is its center element. Each of the three models has a center member that has a unique and durable material and shape. Also called a "spider," the center is designed to address and resolve the type of misalignment targeted. Ideal for unidirectional continuous movement or rapid bidirectional motion.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Using 3D printers becomes an 'everyday thing' for Army researchers

By David McNally, RDECOM

When you walk into the research lab at Aberdeen Proving Ground, MD, you hear the overpowering hum of massive machines with robotic parts swinging past viewing windows as technicians spray objects with lasers attached to limber metallic arms.

Fifty years ago, what goes on in this lab would have been considered science fiction, but what these Army researchers do is scientific fact.

Rapid Technologies Branch Chief Rick Moore explains how they use 3D printing technologies at the Edgewood Chemical Biological Center at Aberdeen Proving Ground, MD.[Photo Credit: David McNally, RDECOM]

 

 

 

 

These artisan engineers create three-dimensional objects out of plastic and metal in printers that seem like Star Trek replicators.

"It's allowed us to develop items for the warfighter quicker," said Rapid Technologies Branch Chief Rick Moore, Edgewood Chemical Biological Center. "We're able to come up with concepts and designs using our [computer-aided design] software, print them out, and have them in an engineer's hand the next day."

The lab is an element of the U.S. Army Research, Development, and Engineering Command, which has labs and research centers across the country. Army scientists, researchers, and engineers reach out to the team as needed.

Three-dimensional objects are created with computer-aided design, or CAD, programs, but Moore and his team also use lasers to "read" an object to create a 3D file. This process allows them to reverse-engineer practically anything.

For example, an Army technician scans part of a protective mask. As the laser passes over every millimeter of the object, the computer plots points in 3D space. On-screen the mask immediately comes into view as a three-dimensional object. Sending the file to the printer results in a solid copy you can hold in your hand within a few hours.

"It is kind of a magical thing," Moore said. "Seeing people who have never seen it before come through the lab finally get it and understand it ... you can see it in their face. They think it's something from the future."

The team's 3D printers churn out new objects day and night. Researchers use a variety of techniques to get the job done. Some printers use lasers, others spray heated plastic through print heads. One system uses a vat of "goo" to hold the object in place as it creates it layer by minuscule layer.

One massive printer uses a carbon dioxide laser to precisely melt powder. As one layer solidifies, the platform drops a little, a fresh layer of powder is spread, and the laser goes to work on the next layer.

A metallic part lies freshly made inside a futuristic 3D printer. [Photo Credit: David McNally, RDECOM]

 

 

"In the end, we'll raise the platform up and we'll have the printed object encapsulated in powder," Moore said. "We pull it out, shake off the excess powder, and then we've got a part."

Modeling artist Bradley Ruprecht said other printers in the lab are similar to desktop ink-jet printers.

"Instead of depositing ink on a page, the print head deposits a photo polymer onto the platform. A photo polymer is liquid until it's exposed to ultraviolet light and then it polymerizes, or solidifies, into a plastic," Ruprecht said. "Just like your ink-jet printer can mix colors together to get a different color, we can mix materials together. So we can make a rigid plastic or adjust the shore value and make it the stiffness that you want. You can also make parts that have two different materials embedded in each other."

One recent project involved coming up with a solution to help Soldiers carry a heavy piece of sensor equipment in the field.

"The Army Research Lab asked us to develop a holder for a heavy handheld sensor called a Mine Hound, which is used as an improvised explosive device detection sensor," Moore said. "They wanted something that would cradle the handle, so it's putting more weight on the Soldiers' vest and back as opposed to just their forearm."

The team scanned the sensor and came up with a myriad of design options in short order.

"The fact that we could do this many designs and print them out and have them in their hands in one week gave them the option to choose between what works best for their application," Moore said. "This is a good example of how we use the technology every day.

Moore said the part is still in the design process.

"We're going to make 10 of them for testing," he said. "Once we have their approval we're going to do the rapid tooling and use injection molding to make several thousand of the holders."

Injection molding is a more conventional manufacturing technique; however, the team uses 3D printing technology to augment, test, and even make molds that otherwise would add weeks or months to the process.

"We are deftly pushing what we like to call rapid tooling," Moore said. "It uses these technologies to build molds as opposed to conventional machining a mold."

In the future, Moore sees the technology becoming more commonplace.

"I see it expanding in the materials," he said. "I see the speed increasing and the sizes of the parts increasing. There are also a lot of fascinating medical applications, which kind of overlap with what we'd like to do in the Army in the future."

Medical personnel may use 3D laser scans on a Soldier before he or she is deployed. This would ensure all physical features are on file.

"If a Soldier comes back wounded, we'd have that data on our side where we could possibly build prosthesis that are exactly how the Soldier used to look -- instead of sculpting it and scanning it," Moore said.

3D printing may have been pioneered in the 1980s and brought to the market in the mid-1990s, but combining the processes with more powerful software and accurate lasers offers potential for future manufacturing techniques.

"Every day we're building parts for the customer, whether it is an exploded fragment or munitions," Moore said. "The more our customers use 3D printing, the more they're relying on it to do their testing before they do the manufacturing. So, it's become an everyday thing."

Moore said he and his co-workers enjoy their jobs.

"If you take a look at this equipment, how could you not like the job?" he asked. "I make stuff every day. I make something from nothing with state-of-the-art technology. The future is definitely fascinating."

Published October 2012

Rate this article

[Using 3D printers becomes an 'everyday thing' for Army researchers]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2012 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy